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Summary

There are four independent sources of indeterminate error in the measure-
ment of peaks by height and width: placing the base line, measuring the
height, measuring the intermediate height, and measuring the width.
Perimeter methods, i.e., planimeter and cutting and weighing, have similar
errors arising from placing the base line, tracing the peak outline, obtain-
ing a reading, and, for cutting and weighing, variability of the paper thick-
ness. In general, these errors depend on peak shape and peak area. The
relative error in area decreases with increasing peak area. In most cases
there is an optimum peak shape which gives minimum error. Although
many factors affect the optimum shape, it frequently is in the range of 2 to 10
for the ratio of height to width at half-height.

The measurement of the area under a Gaussian- (or near Gaus-
sian-)shaped peak is a common operation in a modern laboratory.
In particular, such measurements form a major part of gas-chroma-
tographic analyses and in a typical isothermal analysis the peaks
may vary from sharp, thin spikes near the beginning of the analysis

® This article will be published later in a volume entitled Separation Tech-
niques: Proceedings of the Nineteenth Annual Summer Symposium on Analytical

Chemistry.
} Contribution No. 362 from the Research Council of Alberta.
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to peaks so broad as to be almost indistinguishable from the base
line at the end of an analysis. This program originated out of studies
in programmed-temperature gas chromatography, which includes
among its advantages the production of peaks of nearly constant
peak shape throughout the whole analysis. It is therefore possible
that all components of a given sample could be eluted as peaks
having an optimum shape for area measurement.

Many factors affect the precision and accuracy of integration of
the area under a peak, and a number of theoretical and experi-
mental studies have been reported (1-8). Several of these have in-
volved comparisons of different methods of measuring peak areas,
and others have been associated with studies of the over-all pre-
cision of the chromatographic process. The present paper is limited
to a theoretical consideration of the indeterminate errors (and their
relation to peak shape) that occur in the principal manual methods
for integrating Gaussian peaks: measurement of height and width
at some fraction of height, use of a planimeter, and cutting out the
peak and weighing the paper. The last two techniques have certain
similarities in that they both depend on tracing the perimeter.

As Harris and Habgood pointed out (9), the precision in an area
measured for a chromatographic peak by the height-width method
depends on the precision with which the height and width of the
peak can be measured. As long as the relative error of these two
measurements is favorable, that is, the absolute values for the
height and width are large, then the precision in area will be good.
Conversely, peaks having a small absolute value for either height
or width will have areas measured with poor precision.

The precision in an area measured for a chromatographic peak
by either the planimeter or the cutting and weighing method de-
pends on the precision with which the peak perimeter can be
traced. Both methods will involve some degree of wandering from
the perimeter during the tracing operation. For a given degree of
wander during the tracing operation, the precision in area will be
best for peaks of minimum perimeter. Conversely, the precision
in area will be poor for either sharp or flat peaks, both of which have
large perimeters.

In other words, under isothermal conditions both rapidly eluted
and strongly retained gas-chromatographic sample components
have undesirable height-to-width ratios. At some retention value
an optimum shape for area determination is to be expected.
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HEIGHT-WIDTH METHOD

The measurement of peak area by the height-width method re-
quires four separate operations and measurements. First a base line
under the peak must be located and drawn. There will be an error
associated with this operation, the standard deviation of which we
will designate AB. Next the peak height h is measured from this
base line. The standard deviation of the error for this operation is
designated Ah. Third, the position of an intermediate height is
located. This intermediate height y is chosen to be some fraction
r of the total height h, that is r=y/h. The standard deviation of the
error in locating the position of y is designated Ay. Finally, the peak
width w, is measured at the position y. The standard deviation of
this measurement is designated Aw. Each of the four basic measure-
ment errors is illustrated in Fig. 1.

FIG. 1. Schematic diagram of a Gaussian peak showing errors associated

with measurements of peak height and width. The encircled portion

illustrates the relation between an error in the intermediate height y and
the error in peak width w.

The area is calculated from the measured values of h and w,
according to the formula

A = C,hw, (1)
where C, is a constant for a given r (6). The value of C, is given by
r=1Va/ln (1/r) 2)

The enlarged portion of Fig. 1 shows that an error in the estab-
lishment of the intermediate height y, even though due to an error
in height measurement or base-line placement, introduces an error
in the determination of width. If this error in y is 8y (where the
symbol & is used to distinguish from the error Ay arising in the
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actual measurement of y), then the resultant error in the over-all
width is
Sw = 8y (dw/dy) 3)

Each of the four basic errors will contribute to the error for the
calculated area of a peak. The total effect of these four sources of
error is obtained by adding them in a statistical sense.

Error in Placing the Base Line

The error in determining the base line affects the area directly
through the value of h and indirectly through the value of w, used
in Eq. (1). The direct error in h from this source is equal to AB. The
value of w, is affected according to Eq. (3) by the error in y that re-
sults from the base-line uncertainty AB. This error arises in two
ways. For example, placing the base line too low (Fig. 2) will result

FIG. 2. Schematic diagram of a Gaussian peak, indicating the error caused
in the intermediate height for height-width measurements due to the base
line being drawn too low by an amount AB.

in an error in h, 8h, equal to AB and will cause the intermediate
height to be measured from too low a position. For this reason the
value of y will be too small by an amount AB, that is, will contain
an error —AB. On the other hand, the measured value of h is too
large by an amount AB, and hence the distance y to be marked off
will be large by the amount r AB. Thus the error in y directly re-
sulting from this error AB in the base line is given by
8yp =—AB(1 —1) 4)
If the base line were drawn too high by an amount AB, the errors
in h and y would be —AB and +AB(1 — r).

The area is affected by the errors in the values of height and
width according to the general relationship

AA = (0A/ow) dw + (dA/dh) 8h (5)
Or, in relative terms, a combination of Eqs. (1) and (5) yields

AA/A = (dw/w,) + (8h/h) (6)
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If Eq. (4) is substituted in (3) the error in width due to the base-line
uncertainty AB is

dw = —AB(1 — N(dw/dy) (7)
From the Gaussian formula expressed by
w, = 20(2 In hjy)"? (8)

where o is the standard deviation of the Gaussian curve, the partial
derivative of Eq. (7) can be obtained:

(0w/]oy)m = — V2 o/rh(In 1/r)!2 (9)

Substitute Egs. (7), (8), and (9) in (6), noting that 8h is equal to
+AB in this case, and the expression for the relative error in peak
area arising from base-line uncertainty (AAz/A) becomes

AAR/A=(AB/h){1+ [(1—1)/2r In(1/r)]} (10)

Error in Measurement of Height

Error in measuring height also affects the area, both directly
through the value of h and indirectly through the value of w, used
in Eq. (1). The argument here is similar to that used for the base-
line error, with the important exception that now the base line is
assumed to be established and we are concerned only with the
measurement of height from this base line. Hence the error carried
into the y determination, 8y,, is r Ah, compared with —AB(1 —r)
in the previous case. As a consequence, through Egs. (3), (6), (8),
and (9) the expression for the relative error in area (AA,/A) due to
an error in the height measurement is

AAL/A = (Ah/R){1 —1/[2 In 1/r]} (11)

Error in the Measurement of Intermediate Height

Since the height h is now established, the error incurred in meas-
uring the intermediate height y can affect the area only indirectly
through the value of w, used in Eq. (1). Hence in this instance 8h
in Eq. (6) is equal to zero. By the arguments previously presented,
the resulting expression for the relative error in peak area (AA,/A)
due to an error in measuring the intermediate height is

AA,JA =—Ay/2 rh In Y/r (12)
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Error in the Measurement of Width

The error arising in the measurement of the width w, affects the
area only directly through the value of w, used in Eq. (1). Thus the
relative error in peak area (AA,/A), as a result of an error in the
width measurement, is

AAJA = Aw/w, (13)

Total Error in Peak Area

The four basic errors arising from the measurement operations
are independent and will add as variances. The total relative error
in peak area, therefore, is expressed by

AAJ/A = V(AAR/A? + (AALJA)? + (AAJA) + (AA,JA)? (14)

Sources of Measurement Errors

In general, the independent errors described in the preceding
section may be related to one or more of the following:

1. Deciding where to draw the base line or between which
points to make measurements. The uncertainty here arises from
irregularities in the recorder trace.

2. Correctly placing the ruler vertical to, or parallel to, the base
line as required in the particular operation.

3. Correctly observing the reading of the ruler in relation to the
points at which measurements are made.

All irregularities in the recorded trace may be treated as noise
and may conveniently be divided into high- and low-frequency
noise. High-frequency noise has a period that is short compared
with the width of the peak. There is then some possibility of
smoothing the trace before making measurements. Low-frequency
noise has a period that is long compared with peak width and is an
erratic base-line drift.

The precision with which the base line can be drawn, and hence
the magnitude of AB, depends on both the high- and the low-fre-
quency noise. High-frequency noise requires smoothing the base
line on either side of the peak and thereby introduces an uncer-
tainty. Low-frequency noise or base-line drift means that the true
base line is less likely to be a straight line between the limiting
wings of the peak.
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The precision with which the peak height h can be measured
from the chosen base line depends on the noise in the region of
the peak maximum. In particular, that noise with a frequency com-
parable to the peak width limits the precision in locating the true
peak maximum. In addition, the precision in measuring the height
depends on the proper placement of the ruler and on the error in-
curred in the measurement observation or reading of the ruler.

The precision with which the intermediate height y can be
located depends upon the proper vertical and horizontal placement
of the ruler. In addition, there will be an error in reading and mark-
ing off the required distance and then an error in placing the ruler
for the width measurement at the indicated value of y. Some com-
pensation of errors may occur in these last two steps. Note that the
operation of locating the intermediate height from the established
base line is independent of noise that may be present in the peak
trace.

The precision with which the peak width w, can be measured
depends on the ruler being placed parallel to the base line. In addi-
tion, there is uncertainty in locating the true sides of the peak
under noise conditions. High-frequency noise is of primary signifi-
cance here. Even without noise there is error in reading the ruler.

Finally, sharp peaks present a special problem in regard to noise.
The existence of all but the highest-frequency noise in the trace of
sharp peaks is virtually lost to the observer. Therefore, whether the
height and width (and thus the area) or just the height of the sharp
peak is being measured, the results appear deceptively precise. As
already noted, the merging of peaks of any shape with noise of
similar frequency becomes a problem. However, with peaks of
flat or even of intermediate shape the operator is usually aware of
interfering noise and can interpret the results accordingly. This
may not be possﬂ)le with sharp peaks that give the appearance of
being ideally Gaussian.

Reading Error

Reading error arising out of the measurement of distances be-
tween two lines is inherent in all measurement operations except
base-line placement. It therefore warrants close examination.

The various measurement operations may each be considered
to involve measuring the distance between two lines with a ruler—
in the case of h and y between two parallel lines and in the case of
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w between two inclined lines with the slopes decreasing as the
peak becomes flatter.

A minimum value of the reading error would be expected when
measuring the distance between two well-defined parallel lines
(Fig. 3A). The error would increase to infinity as the angle be-

| {._V‘Am

A i
T_(l-'-com) ;\

FIG. 3. Schematic representation of reading error. (A) Reading error Am

arising in a measurement between parallel lines. (B) Reading error arising

in 2 measurement between sloping lines. By simple geometry the expected

reading error is Am/sin a (the right part of the figure); the quantity Am(1 +
cot a) (left part of the figure) gives a better fit with experiment.

tween the lines and the ruler decreased from 90° to 0° (Fig. 3B).
This would be analogous to measuring the widths of symmetrical
peaks varying in shape from sharp to flat.

A relation between the error and the degree of inclination be-
tween the lines and the ruler can be derived by considering Figs.
3A and 3B. Assume each line to have a band of uncertainty of width
Am/2. The uncertainty for a measurement between sloping lines
each of which forms an angle o with the ruler might then be ex-
pected to be

Amy,= Am/sin « (15)
or the equivalent expression
Am, = Am(l + cot? a)'? (16)

A preliminary investigation (10) of the standard deviation of
measurements between two lines as a function of the angle « as
defined in Fig. 3B showed a better fit to a simpler relationship than
that of Eq. (16), namely,

Am, = Am(]l + cot a) (17)

Equation (17) suggests that the uncertainty increases somewhat
faster with decreasing values of a than would be expected by the
construction on the right side of Fig. 3B and the uncertainty
would be better represented by the heavy line shown in the left
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part of this figure. Equation (17) is used to relate the observational
error in the width measurement to the observational error asso-
ciated with the height measurement.

Noting that

cot a = —Hdw/dy) (18)
and using Equation (9), we obtain for a Gaussian curve
Amy = Am{1 + [o/rh(2 In 1/r)*"2]} (19)

The Limiting Case

Under ideal conditions of noise-free Gaussian peaks a minimum
error in area will result from the observational error in each meas-
urement operation. This therefore constitutes the limiting case in
area determination by the height-width method. The minimum
error in measuring h is equal to Am, and the minimum error in
measuring w, is given by Eq. (19). We assume both the minimum
error in base-line placement and the minimum error in locating the
intermediate height to be equal to Am.

Making appropriate substitutions for the various terms of Eq. (14)
leads to the following expression for the total relative error in peak
area for the limiting case:

() [+ At + O [ - omws)
* [2#7 ﬁl" 1/r]2 + [Am i ZUE‘;’{,’} (12 /,l)r,'m” ')"211]2 (20)

AA
A

which may be rearranged to the more simplified and general
expression

A—=r)1]? 1 ]2 [ -1 ]2
AA 1 [1+2rln llr] +[1 21n 1/r + 2r In 1/r

AAm h 1 1 2
+ [E + 4r In I/r] ey

The four terms under the square-root sign refer, as before, to the
four errors AB, Ah, Ay, and Aw.
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By use of Eq. (21) the quantity AA/A Am, which is the relative
error in area per unit observational error, can be calculated for var-
ious situations. For example, with a particular value of r, the frac-
tional height at which the width is measured, and a given peak area
A, it is possible to calculate this relative error as a function of peak
shape, h/w, since h and w, are related to the area through Egs. (1)
and (2). In Fig. 4A the relative error AA/A Am is plotted against
h/w,;, for r equal to 0.5 and various values of the peak area. The
abscissa scale is reversed so that the sharp (early) peaks in an iso-
thermal chromatogram are to the left. For each peak area the rela-
tive error is a minimum at some optimum peak shape—in this case,
at h/w;, equal to 2 to 3.

The preliminary experiments (10) indicate a value of Am of or a
little below 0.01 ¢m for careful observers. Taking Am to be 0.01 cm
means that the numerical values of the ordinate in Fig. 4 may also
be interpreted as the actual percentage error in area AA/A.

ol

PEAK SHAPE, I'\/w‘,2

FIG. 4. Relative error per unit of observational error as a function of peak
shape for the limiting case of Eq. (21). The curves in A are for peaks of 1, 10,
100, and 1000 c¢m?® area, whose widths are measured at 0.5 of the peak
height. The measurement errors AB, Ah, and Ay are assumed to be equal
to Am, and the measurement error Aw is assumed to be equal to Am(1 +
cot a). In B, C, and D the solid lines are reproduced from part A and the
dashed lines illustrate the effect on relative error when base-line uncer-
tainty AB increases with increasing peak width according to Eq. (22) and
k equal to 1 to 10.
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Increasing Base-Line Uncertainty with Increasing Peak Width

So far we have taken the base-line uncertainty AB to be the same
for peaks of all widths. As already noted, the base-line uncertainty
will increase with an increase in low-frequency noise and base-
line drift. We might expect that any particular low-frequency noise
would give an increase in base-line uncertainty as peaks broaden.
We suggest that the uncertainty might increase according to the
square root of the peak width, and that a suitable function for AB
might be-.

AB = AB°(1 + kVw,,) (22)

where k is a constant and w,, is the peak width measured at
half-height.

The limiting case where AB° is equal to Am in practice might
correspond to a chromatogram with negligible short-term noise
but some low-frequency noise or drift.

Assigning a value of 10 to k, for example, and taking AB° equal
to 0.01 cm would mean that a peak with a 15-cm width at half-
height would have a AB value of about 0.3 cm, which is approxi-
mately 1% of the base width. Substituting Eq. (22) in (10) and (21)
produces the broken curves of Fig. 4.

Figures 4B, 4C, and 4D illustrate the profound effect that increas-
ing base-line uncertainty [Eq. (22)] has on the errors for areas of
1, 10, and 100 cm?. Flat peaks (low h/w,,, values) are affected to the
greatest degree. In addition, these three parts of the figure show
that the optimum peak shape becomes sharper as the parameter
k increases.

Relative Importance of the Individual Measurement Errors

Figure 5 shows the relative importance of each of the four meas-
urement errors AB, Ah, Ay, and Aw for the limiting conditions. In
parts A, B, and C of Fig. 5 the relative error in area per unit obser-
vational error is given for each measurement error assumed to be
present by itself; that is, all the other terms in Eq. (21) are assumed
to be zero. The relative error in area due to the error in measuring
the width is of considerable importance for sharp peaks. This im-
portance diminishes as the peak flattens and then increases at the
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FIG. 5. Individual and relative contributions of the four measurement
errors AB, Ah, Ay, and Aw to the relative error per unit of observational
error as a function of peak shape for the limiting conditions of Eqs. (21) and
(22). In A, B, C the solid lines show the relative error due to each of the four
measurement errors if each were to be the only measurement error present;
the dashed lines show the effect of AB increasing with peak width accord-
ing to Eq. (22). D shows the relative importance of each measurement error
to the over-all error, that is, each squared term in Eq. (21) expressed as a
percentage of the total relative error for the limiting case. The base-line-
placement error AB is assumed independent of peak width (k =0).

point where the observational error of reading between the slop-
ing peak sides begins to increase dramatically (see the Aw curve
of Fig. 5).

The other errors AB, Ah, and Ay are comparatively unimportant
for sharp peaks. As the peaks flatten, however, the relative errors
in area due to these three quantities rise markedly, particularly
that due to base-line uncertainty AB. The increase in relative error
due to AB is even more pronounced when allowance is made for
the functional increase in base-line uncertainty of Eq. (22). The
dashed curves of Figs. 5A, 5B, and 5C illustrate this effect for k
equal to 1 and to 10. Since the curves of Figs. 5A, 5B, and 5C apply
to any value of Am, they may be used to calculate the terms in Eq.
(21) for cases in which the individual errors AB, Ah, etc., are dif-
ferent from Am.
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Finally, considering again the total expression for AA/A Am used
in Fig. 4, Fig. 5D shows the relative importance of each squared
term as a percentage of the total. Although this relationship de-
pends upon 7 (Fig. 5D is only for r = 0.5), the curves are independ-
ent of peak area.

The relationships that have been developed here, and that in-
clude the parameter r, permit an analysis to determine the optimum
value of r, that is, the best fractional height at which to measure the
peak width. Such an analysis, which is being prepared in a separate
publication, should be somewhat more extensive than that pub-
lished by Said and Robinson (6), who, considering only the un-
certainty in the height measurement and its effect on the computed
area, concluded that the width should be measured at 1/e of the
height.

PERIMETER METHODS

Two integration methods, cutting and weighing and planimetry,
have been grouped as perimeter methods because of their basic
similarity. Both require four separate operations. First a base line
must be located and drawn under the peak. The standard deviation
of this error we shall designate AB as before. Next the outline of
the peak must be traced or cut. This will result in a band of uncer-
tainty around the edge whose area is equal to the peak perimeter
P times the width of the band designated as Am. Third, the planim-
eter or balance will be read with a reading error, of standard devia-
tion AR. Finally the peak area is calculated from the instrument
reading according to the formula

A=fR (23)

where R is the planimeter or balance reading and f is the neces-
sary conversion factor. For cutting and weighing only, variation in
paper thickness is equivalent to an indeterminate error in f, Af.
The factor f will be implicit when a calibration graph is used to
express the instrument reading directly in weight, concentration,
or percentage units.

The value of f is obtained from instrument readings of known
areas, and inaccuracies arising in the determination will result in
a determinate error in the conversion factor. This determinate error
in f should not be confused with indeterminate errors under con-
sideration in this paper.
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Error in Placing the Base Line

The error in placing the base line is essentially the same as
described in the height-width method. For perimeter methods it is
convenient to treat this error as a narrow strip of length 6a across
the bottom of the peak, as shown in Fig. 6. The relative error in

BASE LINE
PLACEMENT

A WSSOI A IO IS SIS IS S0

PERIMETER

FIG. 6. Schematic diagram of a Gaussian peak indicating the errors asso-

ciated with perimeter methods of peak integration. Upper, error due to

uncertainty in base-line placement. Lower, error arising from tracing or

cutting around the perimeter; a detailed view of the tracing of a section of
the perimeter is shown at the bottom.

area (AA/A) resulting from this base-line uncertainty can then be
expressed as

AA/A = AB6a/V2rha = (6/ V2w)AB/h (24)

Error in Tracing the Peak Outline

The error incurred in tracing or cutting the peak perimeter
(Fig. 6) may be considered as the area of a band of uncertainty of
width Am around the perimeter P. Examined in greater detail, as
indicated at the bottom of the figure, the net error for any single
tracing is a succession of small errors which will partially cancel
each other as the trace deviates first to one side, then to the other,
of the true line. Consider the perimeter as divided into n incre-
ments each of length AP; AP is taken just large enough that the
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direction and magnitude of the average deviation Am; over a given
increment is independent of that of the preceding and following
increments. The net area of the band of uncertainty around the
perimeter is the algebraic sum of the areas of all such increments:

AA =Y AP Am;=n AP S Amfn =P Am,, 25)

Because the values of Am,; are assumed to be indeterminate and
hence to have equal probabilities of being positive or negative, the
sum of all values of Am;, and hence also Am,,, should approach
zero given a sufficiently large sample, that is, as n becomes large.
For the finite length of any given perimeter, Am,, may be con-
sidered as the average of a limited sample n drawn from an infinite
population the average of which would be zero. We are interested
in the standard deviation of the Am,, values that would be obtained
by successive repetitions of the measurements on one peak. Call-
ing this standard deviation of the mean Am, we may show by the
usual statistical methods (11) that Am is inversely proportional to
Vn. Since n is proportional to P, we have

Am = Am°/VP (26)

where Am?® is the standaﬁ deviation of the mean per unit length of
perimeter. Substituting Am for Am,, in Eq. (25) and expressing the
error relative to the area yields

AAL/A = Am°VP/A (27)

A simple approximation to the perimeter of a Gaussian curve can
be made using the triangle formed by drawing tangents to the in-
flection points. The base width of such a triangle is 40, and the
perimeter is simply the sum of the base and the two sides. Making
the approximation that the area of the triangle equals that of the
Gaussian peak leads to the following expression for the perimeter:

P=40 + 2V4c? + (w[2)h? (28)

Combining Eqgs. (27) and (28) gives the expression for relative
error in area due to the tracing operation:

AALJA = [4o + 2Viac® + (w[2)R*]"2[Am°]/ V2w ho (29)
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Other Indeterminate Errors

The error in reading the instrument, whether planimeter or bal-
ance, is in part analogous to the observational error Am described
for the height-width method. The relative error in area resulting
from the instrument reading error can be expressed simply as

AAR/A = AR/R (30)

The magnitude of AR is unknown and will involve the pole arm
setting of the planimeter, type of balance, etc. A balance is in-
herently so sensitive that, particularly for small peaks, AR/R will
be much smaller with a balance than with a planimeter. For either
planimeter or balance, the value of AR/R is independent of peak
shape for peaks of constant area.

In the case of the cutting-and-weighing method the error due to
nonuniformity in paper thickness must also be included in a total
error expression. As already indicated, it is convenient to treat this
error as an error Af in the conversion factor f. By arguments directly
analogous to those used in the development of Am in the previous
section,

Af=Af|VA (31)

where Af° is the standard deviation in the calibration factor as it
would be determined from a large number of measurements of
separate unit weights of chart paper. This gives the relative error
in area due to variations in paper thickness:

AAJA=Af°If VA (32)
The magnitude of Af° depends only on variability in the paper.

The General Error Equation for Perimeter Methods

The errors due to base-line placement, perimeter tracing, instru-
ment reading, and paper thickness variation are random in origin
and occur independently of each other. Consequently the total
indeterminate error in the calculated area of a peak is obtained by
adding their variances. For the planimeter method the total rela-
tive error in area can be written in general form as

AAJA = V(AA/A): + (AALJAY + (AAJA)? (33)
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The total relative error in area for the cutting and weighing
method can be written as

AA/A = V(AALAY + (AAJAE + (AALJAP + (AAJAYE  (34)

The relative magnitudes of the individual terms are much less
obvious than was true for the height-width analysis, where, at least
for the limiting case, all errors could be related to the basic reading
error Am. For a further analysis of the perimeter errors we have
chosen to ignore the effects of the reading error AR and of paper
thickness Af. These effects are independent of peak shape (al-
though not of peak area) and at least in some cases should be minor.
By considering only AB and Am we arrive at a simple expression
for investigating peak shape that is applicable to both perimeter
methods.

AAJA = V(AAG/A)? + (AAL/A)? (35)
Rewriting Eq. (35) in terms of (24) and (29) gives

AAJA = V(18 AB%/wh?) + {[4c + 2V4a? + (w/2)h?] [Am°)2/2wh2a?}
(36)

Figures 7A, 7B, and 7C are plots of Eq. (36) as a function of peak
shape for peaks of 1, 10, and 100 cm? area. In each of these three
figures the base-line uncertainty AB is assigned the same value of
0.01 cm and is assumed to be independent of peak width. Since the
magnitude of Am® is unknown, it is assigned values ranging from
0 to 0.1 cm to cover all cases of practical interest. As Am°® approaches
zero, the second term of Eq. (36) vanishes, and, in the limit, the
relative error in area is that due to base-line placement.

Figures 7A, 7B, and 7C show that, depending on the value of
Am® other than zero, optimum peak shapes exist for perimeter
methods. For all three areas the h/w,, value for the optimum shape
decreases (i.e., the peaks flatten) as Am° decreases. It appears
likely that the optimum shape for the perimeter methods is in the
range of 1 to 10 for the height-to-width ratio. Optimum peak shape
is more clearly defined for peaks of small area than for those of
large area. In addition, and as would be expected, a given value of
Am° induces a much larger relative error in area with peaks of small
area than with peaks of large area.

Figure 7D illustrates the effect of varying base-line uncertainty
for peaks of constant area (10 cm?) with a unit band-width uncer-
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FIG. 7. Relative error as a function of peak shape for the limiting case of
Eq. (35) for perimeter methods. The curves in A, B, and C are for peaks of
1, 10, and 100 cm? area with various values of Am° and base-line uncer-
tainty AB°= 0,01 cm. (Errors due to instrument reading and paper thick-
ness variation are not included.) D shows the effect of changes in base-
line uncertainty through variation in both AB® and k of Eq. (22).

tainty Am® of 0.01 cm. A range of base-line uncertainties both with
and without an increase due to increasing peak width is illustrated.
As base-line uncertainty increases, the optimum peak becomes
sharper.

This paper has been limited to the principal manual methods for
measuring peak areas, and a detailed analysis of the indeterminate
errors in the measurement of areas by mechanical or electronic
integrators has not been attempted. No integrator can eliminate the
base-line error and a AA4/A term will always be present. In addi-
tion, there will be the equivalent of a reading error of magnitude
depending on the sensitivity and range of the integrator.

Experimental measurements are in progress to test the relation-
ships given in this paper and to determine the values of the appro-
priate parameters.
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