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SEPARATION SCIENCE, 2(1), 81-99 (1967) 

Indeterminate Errors in the 
Measurement of Chromatographic Peaks* 

D. L. BALL and W. E. HARRIS 
DEPARTMENT OF CHEMISTRY, 
UNIVERSITY OF ALBERTA, 
EDMONTON, ALBERTA, CANADA 

AND 

H. W. HABGOOD 
RESEARCH COUNCIL OF ALBERTA,+ 
EDMONTON, ALBERTA, CANADA 

Summary 
There are four independent sources of indeterminate, error in the measure- 
ment of peaks by height and width: placing the base line, measuring the 
height, measuring the intermediate height, and measuring the width. 
Perimeter methods, i.e., planimeter and cutting and weighing, have similar 
errors arising from placing the base line, tracing the peak outline, obtain- 
ing a reading, and, for cutting and weighing, variability of the paper thick- 
ness. In general, these errors depend on peak shape and peak area. The 
relative error in area decreases with increasing peak area. In most cases 
there is an optimum peak shape which gives minimuni error. Although 
many factors affect the optimum shape, it frequently is in the range of 2 to 10 
for the ratio of height to width at half-height. 

The measurement of the area under a Gaussian- (or near Gaus- 
sian-)shaped peak is a common operation in a modern laboratory. 
In particular, such measurements form a major part of gas-chroma- 
tographic analyses and in a typical isothermal analysis the peaks 
may vary from sharp, thin spikes near the beginning of the analysis 

* This article will be published later in ii volume entitled Sepurcition Tech- 
niques: Proceedings of the Nineteenth Annual Summer Syrnposii~ni on Anulyticcil 
Chemistry. 

t Contribution No. 362 from the Research Council of Alberta. 
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82 D. L. BALL, W. E. HARRIS, AND H. W. HABGOOD 

to peaks so broad a s  to be almost indistinguishable from the base 
line at the end of an analysis. This program originated out of studies 
in programmed-temperature gas chromatography, which includes 
among its advantages the production of peaks of nearly constant 
peak shape throughout the whole analysis. It is therefore possible 
that all components of a given sample could be eluted a s  peaks 
having an optimum shape for area measurement. 

Many factors affect the precision and accuracy of integration of 
the area under a peak, and a number of theoretical and experi- 
mental studies have been reported (1-8). Several of these have in- 
volved comparisons of different methods of measuring peak areas, 
and others have been associated with studies of the over-all pre- 
cision of the chromatographic process. The present paper is liinited 
to a theoretical consideration of the indeterminate errors (and their 
relation to peak shape) that occur in the principal inaiiual methods 
for integrating Gaussian peaks: measurement of height and width 
at some fraction of height, use of a planimeter, and cutting out the 
peak and weighing the paper. The last two techniques have certain 
similarities in that they both depend on tracing the perimeter. 

As Harris and Habgood pointed out (9), the precision in an area 
measured for a chromatographic peak by the height-width method 
depends on the precision with which the height and width of the 
peak can be measured. As long as the relative error of these two 
measurements is favorable, that is, the absolute values for the 
height and width are large, then the precision in area will be good. 
Conversely, peaks having a sinall absolute value for either height 
or width will have areas measured with poor precision. 

The precision in an area measured for a chroinatographic peak 
by either the planimeter or the cutting and weighing method de- 
pends on the precision with which the peak perimeter can be 
traced. Both methods will involve some degree of wandering from 
the perimeter during the tracing operation. For a given degree of 
wander during the tracing operation, the precision in area will be 
best for peaks of minimum perimeter. Conversely, the precision 
in area will be poor for either sharp or flat peaks, both of which have 
large perimeters. 

In other words, under isothermal conditions both rapidly eluted 
and strongly retained gas-chromatographic sample components 
have undesirable height-to-width ratios. At some retention value 
an optimum shape for area deterniination is to be expected. 
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INDETERMINATE ERRORS IN PEAK MEASUREMENT 83 

HEIGHT-WIDTH METHOD 

The nieasurement of peak area by the height-width method re- 
quires four separate operations and measurements. First a base line 
under the peak must be located and drawn. There will be an error 
associated with this operation, the standard deviation of which we 
will designate AB. Next the peak height h is measured from this 
base line. The standard deviation of the error for this operation is 
designated Ah. Third, the position of an intermediate height is 
located. This intermediate height y is chosen to be some fraction 
r of the total height h, that is I = y/h. The standard deviation of the 
error in locating the position of y is designated Ay. Finally, the peak 
width w, is measured at the position y. The standard deviation of 
this nieasurement is designated Aw. Each of the four basic nieasure- 
ment errors is illustrated in Fig. 1. 

, \ 
,- -_ 

FIG. 1.  Schematic diagrani of il Gaussian peak showing errors associated 
with measurements of peak height and width. The encircled portion 
illustrates the relation between an error in the intermediate height y and 

the error in peak width w .  

The area is calculated from the measured values of h and w, 
according to the formula 

A = C,hw, (1) 

c, = +Vn/ln (1/T) (2) 

where C, is a constant for a given r (6). The value of C, is given by 

The enlarged portion of Fig. 1 shows that an error in the estab- 
lishment of the intermediate height y, even though due to an error 
in height measurement or base-line placement, introduces an error 
in the determination of width. If this error in y is 6y (where the 
symbol 6 is used to distinguish from the error Ay arising in the 
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84 D. L. BALL, W. E. HARRIS, AND H. W. HABGOOD 

actual measurement of y), then the resultant error in the over-all 
width is 

sw = sy(aw/ay) (3) 
Each of the four basic errors will contribute to the error for the 

calculated area of a peak. The total effect of these four sources of 
error is obtained by adding them in a statistical sense. 

Error in Placing the Base line 

The error in determining the base line affects the area directly 
through the value of ?i and indirectly through the value of w, used 
in Eq. (1) .  The direct error in h from this source is equal to AB. The 
value of w, is affected according to Eq. (3)  by the error in y that re- 
sults from the base-line uncertainty AB. This error arises in two 
ways. For example, placing the base line too low (Fig. 2) will result 

8 y  8 - A0 +rA0 h+rp@< 
A;+ - - - - - - 

FIG. 2. Scheintitic tliagrain of ii Gaussian peak, indicating the error caused 
in the intermediate height for height-width measurements due to the base 

line being drawn too low by an amount AB. 

in an error in 11, Sh, equal to AB and will cause the intermediate 
height to be measured from too low a position. For this reason the 
value of y will be too small by an amount AB, that is, will contain 
an error -AB. On the other hand, the measured value of h is too 
large by an amount AB, and hence the distance y to be inarked off 
will be large by the amount T AB. Thus the error in y directly re- 
sulting from this error AB in the base line is given by 

Sy, = -AB(1 - r )  (4) 
If the base line were drawn too high by an amount AB, the errors 

The area is affected b y  the errors in the values of height and 

( 5 )  

(6) 

in 11 and y would be -AB and +AB(1 - T ) .  

width according to the general relationship 

AA = ( ~ A I ~ w )  sw + (aA/ah) sh 

AAIA = (Swlw,) + (Shlh) 

Or, in relative terms, a combination of Eqs. (1) and (5) yields 
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INDETERMINATE ERRORS IN PEAK MEASUREMENT 85 

If Eq. (4) is substituted in (3)  the error in width due to the base-line 
uncertainty AB is 

6~ =-AB( l -  ~)(dw/dy),, (7) 

(8) 
where v is the standard deviation of the Gaussian curve, the partial 
derivative of Eq. (7) can be obtained: 

(9) 
Substitute Eqs. (7), (8), and (9) in (6), noting that 6h is equal to 

+AB in this case, and the expression for the relative error in peak 
area arising from base-line uncertainty (AA,/A) becomes 

AA,JA=(AB/h){l+ [(1-~)/2rln(l /r)]}  ( 10) 

From the Gaussian formula expressed by 

w, = 2 4 2  In h/y)''2 

(aw/dy),, = - V'Z o/rh(ln 1 / ~ ) ' / ~  

Error in Measurement of Height 

Error in measuring height also affects the area, both directly 
through the value of h and indirectly through the value of w, used 
in Eq. (1). The argument here is similar to that used for the base- 
line error, with the important exception that now the base line is 
assumed to be established and we are concerned only with the 
measurement of height from this base line. Hence the error carried 
into the y determination, Sy,, is T Ah, compared with -AB(1 - r )  
in the previous case. As a consequence, through Eqs. (3), (6), (8), 
and (9) the expression for the relative error in area (AAJA) due to 
an error in the height measurement is 

(11) AAh/A = (Ah/h){l - 1/[2 In llr]} 

Error in the Measurement of Intermediate Height 

Since the height h is now established, the error incurred in meas- 
uring the intermediate height y can affect the area only indirectly 
through the value of wr used in Eq. (1). Hence in this instance 6h 
in Eq. (6) is equal to zero. By the arguments previously presented, 
the resulting expression for the relative error in peak area (&,/A) 
due to an error in measuring the intermediate height is 

(12) AA,/A = -Ay/2 rh In 1/r 
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86 D. L. BALL, W. E. HARRIS, AND H. W. HABGOOD 

Error in the Measurement of Width 

The error arising in the measurement of the width w, affects the 
area only directly through the value of wr used in Eq. (1). Thus the 
relative error in peak area (AA,JA), a s  a result of an error in the 
width me as  ure men t, i s 

AAJA = Awlw, (13) 

Total Error in Peak Area 

The four basic errors arising from the measurement oper a t ' Ions 
are independent and will add as variances. The total relative error 
in peak area, therefore, is expressed I>y 

AA/A = V(AAB/A)* + (AAJA)' + (AA,/A)* + (AA,,/A)2 (14) 

Sources of Measurement Errors 

In general, the independent errors described in the preceding 
section inay be related to one or more of the following: 

1. Deciding where to draw the base line or between which 
points to make measurements. The uncertainty here arises from 
irregularities in the recorder trace. 

2. Correctly placing the ruler vertical to, or parallel to, the base 
line a s  required in the particular operation. 

3. Correctly observing the reading of the ruler in relation to the 
points at which measurements are made. 

All irregularities in the recorded trace may be treated a s  noise 
and may conveniently be divided into high- and low-frequency 
noise. High-frequency noise has a period that is short compared 
with the width of the peak. There is then some possibility of 
smoothing the trace before making measurements. Low-frequency 
noise has a period that is long compared with peak width and is an 
erratic base-line drift. 

The precision with which the base line can be drawn, and hence 
the magnitude of AB, depends on both the high- and the low-fre- 
quency noise. High-frequency noise requires smoothing the base 
line on either side of the peak and thereby introduces an uncer- 
tainty. Low-frequency noise or base-line drift means that the true 
base line is less likely to be a straight line between the limiting 
wings of the peak. 
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INDETERMINATE ERRORS I N  PEAK MEASUREMENT a7 

The precision with which the peak height h can be measured 
from the chosen base line depends on the noise in the region of 
the peak maximum. In particular, that noise with a frequency com- 
parable to the peak width limits the precision in locating the true 
peak maximum. In addition, the precision in measuring the height 
depends on the proper placement of the ruler and on the error in- 
curred in the measurement observation or reading of the ruler. 

The precision with which the intermediate height y can be 
located depends upon the proper vertical and horizontal placement 
of the ruler. In addition, there will be an error in reading and mark- 
ing off the required distance and then an error in placing the ruler 
for the width measurement at the indicated value of y. Some com- 
pensation of errors may occur in these last two steps. Note that the 
operation of locating the intermediate height from the established 
base line is independent of noise that may be present in the peak 
trace. 

The precision with which the peak width 20, can be measured 
depends on the ruler being placed parallel to the base line. In addi- 
tion, there is uncertainty in locating the true sides of the peak 
under noise conditions. High-frequency noise is of primary signifi- 
cance here. Even without noise there is error in reading the ruler. 

Finally, sharp peaks present a special problem in regard to noise. 
The existence of all but the highest-frequency noise in the trace of 
sharp peaks is virtually lost to the observer. Therefore, whether the 
height and width (and thus the area) or just the height of the sharp 
peak is being measured, the results appear deceptively precise. As 
already noted, the merging of peaks of any shape with noise of 
similar frequency becomes a problem. However, with peaks of 
flat or even of intermediate shape the operator is usually aware of 
interfering noise and can interpret the results accordingly. This 
may not be possible with sharp peaks that give the appearance of 
being ideally Gaussian. 

Reading Error 

Reading error arising out of the measurement of distances be- 
tween two lines is inherent in  all measurement operations except 
base-line placement. It therefore warrants close examination. 

The various measurement operations may each be considered 
to involve measuring the distance between two lines with a ruler- 
in the case of h and y between two parallel lines and in the case of 
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88 D. 1. BALL, W. E. HARRIS, AND H. W. HABGOOD 

w between two inclined lines with the slopes decreasing a s  the 

A minimum value of the reading error would be expected when 
measuring the distance between two well-defined parallel lines 
(Fig. 3A). The error would increase to infinity as the angle be- 

peak becomes f l n  '1 tt er. 

A ~ ~ ~ m ~ ~ . ~ t ~  B // qF - 
- (l+cota ) 

2 
FIG. 3. Schematic representation of reading error. (A) Reading error Am 
arising in a nieasurement between parallel lines. (B) Reading error arising 
in a measurement between sloping lines. By simple geometry the expected 
reading error is Amlsin a (the right part of the figure); the quantity Am( 1 + 

cot a) (left part of the figure) gives a better fit with experiment. 

tween the lines and the ruler decreased from 90" to 0" (Fig. 3B). 
This would be analogous to measuring the widths of symmetrical 
peaks varying in shape from sharp to flat. 

A relation between the error and the degree of inclination be- 
tween the lines and the ruler can be derived by considering Figs. 
3A and 3B. Assume each line to have a band of uncertainty of width 
Am/2. The uncertainty for a measurement between sloping lines 
each of which forms an angle a with the ruler might then be ex- 
pected to be 

Ama = Am/sin a (15) 
or the equivalent expression 

(16) 
A preliminary investigation (10) of the standard deviation of 

measurements between two lines as a function of the angle a as 
defined in Fig. 3B showed a better fit to a simpler relationship than 
that of Eq. (16), namely, 

Ama = Am(1 + cot2 

Ama = Am( 1 + cot a )  (17) 
Equation (17) suggests that the Uncertainty increases somewhat 

faster with decreasing values of a than would be expected by  the 
construction on the right side of Fig. 3B and the uncertainty 
would be better represented by the heavy line shown in the left 
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INDETERMINATE ERRORS IN PEAK MEASUREMENT 89 

part of this figure. Equation (17) is used to relate the observational 
error in the width measurement to the observational error asso- 
ciated with the height measurement. 

Noting that 

cot a = -+(dw/dy) (18) 

(19) 

and using Equation (9), we obtain for a Gaussian curve 

Am, = Am{l + [u/rh(2 In 1 / ~ ) ' / ~ 1 }  

The limiting Case 

Under ideal conditions of noise-free Gaussian peaks a minimum 
error in area will result from the observational error in each meas- 
urement operation. This therefore constitutes the limiting case in 
area determination by the height-width method. The minimum 
error in measuring h is equal to Am, and the minimum error in 
measuring w,  is given by Eq. (19). We assume both the minimum 
error in base-line placement and the minimum error in locating the 
intermediate height to be equal to Am. 

Making appropriate substitutions for the various terms of Eq. (14) 
leads to the following expression for the total relative error in peak 
area for the limiting case: 

which may be rearranged to the more simplified and general 
expression 

A A 1  

+ [ -+ 2,. 4r In 1/r ]e (21) 
z==h 

The four terms under the square-root sign refer, as before, to the 
four errors AB, Ah, Ay, and Aw. 
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90 D. L. BALL, W. E. HARRIS, AND H. W. HABGOOD 

By use of Eq. (21) the quantity AA/A Ant,  which is the rel. '1 t '  ive 
error in area per unit observational error, can be calculated for var- 
ious situations. For example, with a particular value of T ,  the frac- 
tional height at which the width is measured, and a given peak area 
A, it is possible to calculate this relative error a s  a function of peak 
shape, h/w,  since h and w, are related to the area through Eqs. (1) 
and (2). In Fig. 4A the relative error AA/A Am is plotted against 
h/wllz for T equal to 0.5 and various values of the peak area. The 
abscissa scale is reversed so that the sharp (early) pe. n k s in an iso- 
thermal chromatogram are to the left. For each peak area the rela- 
tive error is a minimum at some optimum peak shape-in this case, 
at h/tul,z equal to 2 to 3. 

The preliminary experiments (10) indicate a value of Am of or a 
little below 0.01 cni for careful observers. Taking A m  to be 0.01 cm 
means that the numerical values of the ordinate in Fig. 4 may also 
be interpreted as the actual percentage error in area AAIA. 

I I I 

D 
100cq I I 

! I  

PEAK SHAPE, h / w h  

FIG. 4. Relative error per rinit of ol)servational error a s  a function of peak 
shape for the limiting case of Eq. (21). The curves in A are for peaks of 1, 10, 
100, and 1000 cine area, whose widths are measured at 0.5 o f  the peak 
Ireiglrt. The iiieasureineiit errors AB, A h ,  tuncl A y  are assumed to be eqiiiil 
to Am, ant1 the iiieasiireiiieiit error Aw is assuined to be equal to A m (  1 + 
cot a). In  B, C, and D the solid lines are reproduced from part A and the 
dashed lines illustrate the effect 011 relative error when h e - l i n e  nncer- 
taiiity AB increases with iiicreasiiig peak width according to Eq. (22) and 

k eciuiil to 1 to 10. 
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INDETERMINATE ERRORS I N  PEAK MEASUREMENT 91 

Increasing Base-line Uncertainty with Increasing Peak Width 

So far we have taken the base-line uncertainty AB to be the same 
for peaks of all widths. As already noted, the base-line Uncertainty 
will increase with an increase in low-frequency noise and base- 
line drift. We might expect that any particular low-frequency noise 
would give an increase in base-line uncertainty as peaks broaden. 
We suggest that the uncertainty might increase according to the 
square root of the peak width, and that a suitable function for AB 
might be. 

AB = AB"(l+  k-) 

where k is a constant and is the peak width measured at 
half-height. 

The limiting case where AB" is equal to Am in practice might 
correspond to a chromatograin with negligible short-term noise 
but some low-frequency noise or drift. 

Assigning a value of 10 to k, for example, and taking AB" equal 
to 0.01 cm would mean that a peak with a 15-cm width at half- 
height would have a AB value of about 0.3 cm, which is approxi- 
mately 1% of the base width. Substituting Eq. (22) in (10) and (21) 
produces the broken curves of Fig. 4. 

Figures 4B, 4C, and 4D illustrate the profound effect th. a t increas- 
ing base-line uncertainty [Eq. (22)] has on the errors for areas of 
1, 10, and 100 cm2. Flat peaks (low hlw,,, values) are affected to the 
greatest degree. In addition, these three parts of the figure show 
that the optimum peak shape becomes sharper as the parameter 
k increases. 

Relative Importance of the Individual Measurement Errors 

Figure 5 shows the relative importance of each of the four nieas- 
urement errors AB, Ah, Ay,  and Aw for the limiting conditions. In  
parts A, B, and C of Fig. 5 the relative error in area per unit obser- 
vational error is given for each measurement error assumed to be 
present by itself; that is, all the other terms in Eq. (21) are assumed 
to be zero. The relative error in area due to the error in measuring 
the width is of considerable importance for sharp peaks. This im- 
portance diminishes as the peak flattens and then increases at the 
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92 D. 1. BALL, W. E. HARRIS, AND H. W. HABGOOD 

4 

c 

'E "- 2 

d 
3 
g 4  

a0 

u w 

2 

0 
too 10 1 01 10 I 01 001 

PEAK SHAPE, h / w h  

FIG. 5. Individual and relative contributions of the four meas~ireinent 
errors AB, A h ,  Ay, and Aw to the relative error per unit of observational 
error a s  a fiunction of peak shape for the limiting conditions of Eqs. (21) and 
(22). In A, B, C the solid lines show the relative error due to each of the four 
measurement errors if each were to be the only measurement error present; 
the dashed lines show the effect of AB increasing with peak width accord- 
ing to Eq. (22). D shows the relative impoitance of each measurement error 
to the over-all error, that is, each sqiuired term in Eq. (21) expressed a s  a 
percentage of the total relative error for the limiting case. The base-line- 

placement error AB is assumed independent of peak width (k = O ) .  

point where the observational error of reading between the slop- 
ing peak sides begins to increase dramatically (see the Aw curve 
of Fig. 5) .  

The other errors AB, Ah, and Ay are comparatively unimportant 
for sharp peaks. As the peaks flatten, however, the relative errors 
in area due to these three quantities rise markedly, particularly 
that due to base-line uncertainty AB. The increase in relative error 
due to AB is even more pronounced when allowance is made for 
the functional increase in base-line uncertainty of Eq. (22). The 
dashed curves of Figs. 5A, 5B, and 5C illustrate this effect for k 
equal to 1 and to 10. Since the cui-ves of Figs. 5A, 5B, and 5C apply 
to any value of Am, they may be used to calculate the terms in Eq. 
(21) for cases in which the individual errors AB, Ah, etc., are dif- 
ferent from Am. 
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INDETERMINATE ERRORS IN PEAK MEASUREMENT 93 

Finally, considering again the total expression for AA/A Am used 
in Fig. 4, Fig. 5D shows the relative importance of each squared 
term as a percentage of the total. Although this relationship de- 
pends upon T (Fig. 5D is only for r = 0.5), the curves are independ- 
ent of peak area. 

The relationships that have been developed here, and that in- 
clude the parameter r, permit an analysis to determine the optimum 
value of r, that is, the best fractional height at which to measure the 
peak width. Such an analysis, which is being prepared in a separate 
publication, should be somewhat more extensive than that pub- 
lished by Said and Robinson (6) ,  who, considering only the un- 
certainty in the height measurement and its effect on the computed 
area, concluded that the width should be measured at lle of the 
height. 

PERIMETER METHODS 

Two integration methods, cutting and weighing and planimetry, 
have been grouped as perimeter methods because of their basic 
similarity. Both require four separate operations. First a base line 
must be located and drawn under the peak. The standard deviation 
of this error we shall designate AB a s  before. Next the outline of 
the peak must be traced or cut. This will result in a band of uncer- 
tainty around the edge whose area is equal to the peak perimeter 
P times the width of the band designated as A X .  Third, the planim- 
eter or balance will be read with a reading error, of standard devia- 
tion AR. Finally the peak area is calculated from the instrument 
reading according to the formula 

A = f R  (23) 
where R is the planimeter or balance reading andf is the neces- 
sary conversion factor. For cutting and weighing only, variation in 
paper thickness is equivalent to an indeterminate error in f ,  Af. 
The factor f will be implicit when a calibration graph is used to 
express the instrument reading directly in weight, concentration, 
or percentage units. 

The value off is obtained from instrument readings of known 
areas, and inaccuracies arising in the determination will result in 
a determinate error in the conversion factor. This determinate error 
in f should not be confused with indeterminate errors under con- 
sideration in this paper. 
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Error in Placing the Base line 

The error in placing the base line is essentially the same as 
described in the height-width method. For perimeter methods it is 
convenient to treat this error as a narrow strip of length 6u across 
the bottom of the peak, as shown in Fig. 6. The relative error in 

BASE LINE 

C A P  4 
FIG. 6. Schematic diagram of a Gaussian peak indicating the errors asso- 
ciated with perimeter methods of peak integration. Upper, error due to 
uncertainty in base-line placement. Lower, error arising from tracing or 
cutting around the perimeter; a detailed view of the tracing of a section of 

the perimeter is shown at the I)ottom. 

area (AA,/A) resulting from this base-line uncertainty can then be 
expressed as 

A&/A = A B6u/ 6 h u  = (6/ &)A B/h 

Error in Tracing the Peak Outline 

The error incurred in tracing or cutting the peak perimeter 
(Fig. 6) inay be considered a s  the area of a band of uncertainty of 
width A X  around the perimeter P. Examined in greater detail, as 
indicated at the bottom of the figure, the net error for any single 
tracing is a succession of small errors which will partially cancel 
each other as the trace deviates first to one side, then to the other, 
of the true line. Consider the perimeter as divided into n incre- 
ments each of length AP; AP is taken just large enough that the 
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INDETERMINATE ERRORS IN PEAK MEASUREMENT 95 

direction and magnitude of the average deviation Am, over a given 
increment is independent of that of the preceding and following 
increments. The net area of the band of uncertainty around the 
perimeter is the algebraic sum of the areas of all such increments: 

(25) 
n 

AA = C AP Ami = n AP AmJn = P Amav 

Because the values of Ami are assumed to be indeterminate and 
hence to have equal probabilities of being positive or negative, the 
sum of all values of Am,, and hence also Amav, should approach 
zero given a sufficiently large sample, that is, as n becomes large. 
For the finite length of any given perimeter, Amav may be con- 
sidered as the average of a limited sample n drawn from an infinite 
population the average of which would be zero. We are interested 
in the standard deviation of the Amav values that would be obtained 
by successive repetitions of the measurements on one peak. Call- 
ing this standard deviation of the mean A X ,  we may show by the 
usual statistical methods (1 1) that A T  is inversely proportional to 
fi. Since n is proportional to P ,  we have 

where Kmo is the standard deviation of the mean per unit length of 
perimeter. Substituting A X  for Amav in Eq. (25) and expressing the 
error relative to the area yields 

AATIA = L\m"flIA (27) 

A simple approximation to the perimeter of a Gaussian curve can 
be made using the triangle formed by drawing tangents to the iri- 
flection points. The base width of such a triangle is 4u, and the 
perimeter is simply the sum of the base and the two sides. Making 
the approximation that the area of the triangle equals that of the 
Gaussian peak leads to the following expression for the perimeter: 

(28) P = 4a + 2 g 4 u 2  + (.rr12)h2 

Combining Eqs. (27) and (28) gives the expression for relative 
error in area due to the tracing operation: 

AAT/A = [ 4 ~  + 2 V4a2 + ( ~ / 2 )  k'] 1'2 [ K O ]  / 6 h a  (29) 
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Other Indeterminate Errors 

The error in reading the instrument, whether planimeter or bal- 
ance, is in part analogous to the observational error Am described 
for the height-width method. The relative error in area resulting 
from the instrument reading error can be expressed simply as 

AARlA = AR/R (30) 
The magnitude of AR is unknown and will involve the pole a m  

setting of the planimeter, type of balance, etc. A balance is in- 
herently so sensitive that, particularly for small peaks, ARIR will 
be much smaller with a balance than with a planimeter. For either 
planimeter or balance, the value of ARIR is independent of peak 
shape for peaks of constant area. 

In the case of the cutting-and-weighing method the error due to 
nonuniformity in paper thickness must also be included in a total 
error expression. As already indicated, it is convenient to treat this 
error as an error G i n  the conversion factorf. By arguments directly 
analogous to those used in the development of Am in the previous 
section, 

- 
Af = p l f i  (31) 

where Ky is the standard deviation in the calibration factor as it 
would be determined from a large number of measurements of 
separate unit weights of chart paper. This gives the relative error 
in area due to variations in paper thickness: 

The magnitude of rf” depends only on variability in the paper. 

The General Error Equation for Perimeter Methods 

The errors due to base-line placement, perimeter tracing, instru- 
ment reading, and paper thickness variation are random in origin 
and occur independently of each other. Consequently the total 
indeterminate error in the calculated area of a peak is obtained by 
adding their variances. For the planimeter method the total rela- 
tive error in area can be written in general form as 

AAIA = d(AA,JA)2 + (AAT/A)2 + (AAdA)P (33) 
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The total relative error in area for the cutting and weighing 

AAIA = d(AA,IA)2 + (AA,lA)2 + + (AAflA)2 (34) 

The relative magnitudes of the individual terms are much less 
obvious than was true for the height-width analysis, where, at least 
for the limiting case, all errors could be related to the basic reading 
error Am. For a further analysis of the perimeter errors we have 
chosen to %nore the effects of the reading error AR and of paper 
thickness Af These effects are independent of peak shape (al- 
though not of peak area) and at least in some cases should be minor. 
By considering only AB and A X  we arrive at a simple expression 
for investigating peak shape that is applicable to both perimeter 
methods. 

(35) 

method can be written as 

AAIA = q(A&lA)2 + (AATIA)2 

Rewriting Eq. (35) in terms of (24) and (29) gives 

AAIA = q(18 AB2/.rrh2) + { [4u + 2 q 4 u 2  + (r/2)h2] [m12/2.rrh2c?} 
(36) 

Figures 7A, 7B, and 7C are plots of Eq. (36) as a function of peak 
shape for peaks of 1, 10, and 100 cm2 area. In each of these three 
figures the base-line uncertainty AB is assigned the same value of 
0.01 cm and is assumed to be independent of peak width. Since the 
magnitude of A? is unknown, it is assigned values ranging from 
0 to 0.1 cm to cover all cases of practical interest. As A% approaches 
zero, the second term of Eq. (36) vanishes, and; in the limit, the 
relative error in area is that due to base-line placement. 

Figures 7A, 7B, and 7C show that, depending on the value of m other than zero, optimum peak shapes exist for perimeter 
methods. For all three areas the h/wII2 value for the optimum shape 
decreases (i-e., the peaks flatten) as A% decreases. It appears 
likely that the optimum shape for the perimeter methods is in the 
range of 1 to 10 for the height-to-width ratio. Optimum peak shape 
is more clearly defined for peaks of small area than for those of 
large area. In addition, and as would be expected, a given value of 
A? induces a much larger relative error in area with peaks of small 
area than with peaks of large area. 

Figure 7D illustrates the effect of varying base-line uncertainty 
for peaks of constant area (10 cm2) with a unit band-width uncer- 
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100 I0 I 01 10 1 01 001 

PEAK SHAPE, h / w h  

FIG. 7. Relative error a s  ii function of peak shape for the limiting case of 
Eq, (35) for perimeter nietliods. The curves in A, €3, and C are for peaks of 
1, 10, and 100 cin2 area with various values of A% and Ixise-line uncer- 
tainty AB" = 0.01 cni. (Errors due to instrument reading and paper thick- 
ness variation are not included.) D shows the effect of changes in base- 

line uncertainty through variation in both AB" and k of Eq. (22) .  

tainty ATio of 0.01 cm. A range of base-line uncertainties both with 
and without an increase due to increasing peak width is illustrated. 
As base-line uncertainty increases, the optimum peak becomes 
sharper . 

This paper has been litnited to the principal manual methods for 
measuring peak areas, and a detailed analysis of the indeterminate 
errors in the measurement of areas by niecliaiiical or electronic 
integrators has not been attempted. No integrator can eliminate the 
base-line error and a AA,/A term will always be present. I n  addi- 
tion, there will be the equivalent of a reading error of magnitude 
depending on the sensitivity and range of the integrator. 

Experimental measurements are in progress to test the relation- 
ships given in this paper and to determine the values of the appro- 
priate parameters. 
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